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We study the Zhang model of sandpile on a one-dimensional chain of length L, where a random amount of
energy is added at a randomly chosen site at each time step. We show that in spite of this randomness in the
input energy, the probability distribution function of energy at a site in the steady state is sharply peaked, and
the width of the peak decreases as L−1/2 for large L. We discuss how the energy added at one time is distributed
among different sites by topplings with time. We relate this distribution to the time-dependent probability
distribution of the position of a marked grain in the one-dimensional Abelian model with discrete heights. We
argue that in the large L limit, the variance of energy at site x has a scaling form L−1g�x /L�, where g��� varies
as ln�1 /�� for small �, which agrees very well with the results from numerical simulations.
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I. INTRODUCTION

After the pioneering work of Bak, Tang, and Wiesenfeld
�BTW� in 1987 �1�, many different models for self-organized
criticality have been studied in different contexts; for review
see �2–5�. Of these, models in the general class known as
Abelian distributed processors have been studied a lot, as
they share an Abelian property that makes their theoretical
study simpler �2�. The original sandpile model of Bak et al.
�1�, the Eulerian walkers model �9�, and the Abelian variant
�6� of the model originally proposed by Manna �7� are all
members of this class. Models which do not have the Abelian
property have been studied mostly only by numerical simu-
lations. In this paper, we discuss the Zhang model �8�, which
does not have the Abelian property.

In the Zhang model, the amount of energy added at a
randomly chosen site at each time step is not fixed, but ran-
dom. In spite of this, the model in one dimension has the
remarkable property that the energy at a site in the steady
state has a very sharply peaked distribution in which the
width of the peak is much less than the spread in the input
amount per time step, and the width decreases with increas-
ing system size L. This behavior was noticed by Zhang using
numerical simulations in one and two dimensions �8�, and he
called it the ‘‘emergence of quasiunits’’ in the steady state of
the model. He argued that for large systems, the behavior
would be the same as in the discrete model. Recently, Fey et
al. �10� have proved that for some choices of the distribution
of input energy, in one dimension, the variance of energy
does go to zero as the length of the chain L goes to infinity.
However, they did not study how fast the variance decreases
with L.

In this paper, we study this emergence of quasiunits in
one-dimensional Zhang sandpile by looking at how the
added energy is redistributed among different sites in the
avalanche process. We show that the distribution function of
the fraction of added energy at a site x� reaching a site x after
t time steps following the addition is exactly equal to the

probability distribution that a marked grain in the one-
dimensional height type BTW model added at site x� reaches
site x in time t. The latter problem has been studied recently
�11�. We use this to show that the variance of energy asymp-
totically vanishes as 1 /L. We also discuss the spatial depen-
dence of the variance along the system length. In the large L
limit, the variance at site x has a scaling form L−1g�x /L�. We
determine an approximate form of the scaling function g���,
which agrees very well with the results of our numerical
simulations.

There have been other studies of the Zhang model earlier.
Blanchard et al. �12� have studied the steady state of the
model where the amount of addition of energy is fixed but
the site of addition is chosen randomly, and found that the
distribution of energies even for the two site problem is very
complicated, and has a multifractal character. In two dimen-
sions, the distribution of energy seems to sharpen for larger
L, but the rate of decrease of the width is very slow �13�.
Most other studies have dealt with the question as to whether
the critical exponents of the avalanche distribution in this
model are the same as in the discrete Abelian model �14,15�.
The Fey et al. results imply that the asymptotic behavior of
the avalanche distribution in one dimension is indeed the
same as in the discrete case, but the situation in higher di-
mension remains unclear �16,17�.

The plan of the paper is as follows. In Sec. II, we define
the model precisely. In Sec. III, we show that the calculation
of the way the energy added at a site is distributed among
different sites by toppling is the same as the calculation of
the time-dependent probability distribution of the position of
a marked grain in the discrete Abelian sandpile model. This
correspondence is used in Sec. IV to determine the qualita-
tive dependence of the variance of the energy variable at a
site on its position x, and on the system size L. We propose a
simple extrapolation form that incorporates this dependence.
We check our theoretical arguments with numerical simula-
tions in Sec. V. Section VI contains a summary and conclud-
ing remarks. A detailed calculation of the solution of an
equation, required in Sec. IV, is added as an Appendix.

II. DEFINITION AND PRELIMINARIES

We consider our model on a linear chain of size L. The
sites are labeled by integers 1 to L and a real non-negative
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continuous energy variable is assigned to each site. Let
E�x , t� be the energy variable at site x at the end of the time
step t. We define a threshold energy value Ec, the same for
each site, such that sites with E�x , t��Ec are called unstable,
and those with E�x , t��Ec are called stable. Starting from a
configuration where all sites are stable, the dynamics is de-
fined as follows.

�i� The system is driven by adding a random amount of
energy at the beginning of every time step at a randomly
chosen site. Let the amount of energy added at time t be �t.
We will assume that all �’s are independent, identically dis-
tributed random variables, each picked randomly from a uni-
form interval 1−���t�1+�. Let the site of addition chosen
at time t be denoted by at.

�ii� We make a list of all sites whose energy exceeds or
becomes equal to the critical value Ec. All these sites are
relaxed in parallel by topplings. In a toppling, the energy of
the site is equally distributed to its two neighbors and the
energy at that site is reset to zero. If there is toppling at a
boundary site, one-half of the energy at that site before top-
pling is lost.

�iii� We iterate step �ii� until all topplings stop. This com-
pletes one time step.

This is the slow driving limit, and we assume that all
avalanche activity stops before the next addition event. In
this limit, the model is characterized by two parameters � and
Ec. In the limit �=0, and 1�Ec�2, the model reduces to the
discrete case, where the behavior is well understood �18�.
For nonzero but small �, the behavior does not depend on the
precise value of Ec. In fact, starting with a recurrent configu-
ration of the pile, and adding energy at some chosen site, we
obtain exactly the same sequence of topplings for a range of
values of Ec �10�. To be precise, for any fixed initial configu-
ration, and fixed driving sequence �of sites chosen for addi-
tion of energy�, whether a site x topples at time t or not is
independent of Ec, so long as we have 1+��Ec�2−2�. In
the following, we assume for simplicity that Ec=3 /2 and 0
���1 /4.

It was shown in �10� that in this case, the stationary state
has at most one site with energy E�x , t�=0 and all other sites
have energy in the range 1−��E�x , t��1+�. The position
of the empty site is equally distributed among all the lattice
points. There are also some recurrent configurations in which
all sites have energy E�x , t��1−�. In such cases, we shall
say that the site with zero energy is the site L+1. Then, in the
steady state, there is exactly one site with energy equal to 0,
and the L+1 different positions of the site are equally likely.

If Ec does not satisfy the inequality 1+��Ec�2−2�, this
simple characterization of the steady state is no longer valid.
However, our treatment can be easily extended to those
cases. Since the qualitative behavior of the model is the same
in all cases, we restrict ourselves to the simplest case here.

It is easy to see that the toppling rules are in general not
Abelian. For example, start with a two site model in configu-
ration �1.6,2.0� and Ec=1.5. The final configuration would be
�1.4,0�, or �0,1.3�, depending on whether the first or the sec-
ond site is toppled initially. In our model, using the parallel
update rule, the final configuration would be �1.0,0.8�. Fey et
al. �10� have shown that only in one dimension, for 1+�
�Ec, the Zhang model has a restricted Abelian character,

namely, that the final state does not depend on the order of
topplings within an avalanche. However, topplings in two
different avalanches do not commute.

III. PROPAGATOR, AND ITS RELATION
TO THE DISCRETE ABELIAN MODEL

It is useful to look at the Zhang model as a perturbation
about the �=0 limit. For sufficiently small �, given the site of
addition and initial configuration, the toppling sequence is
independent of �. It is also independent of the amount of
energy of addition �t, and is the same as the model with �
=0, which is the one-dimensional Abelian sandpile model
with integer heights �hereafter referred to simply as ASM,
without further qualifiers�. We decompose the energy vari-
ables as

E�x,t� = Nint�E�x,t�� + ���x,t� , �1�

where Nint refers to the nearest integer value. Then the inte-
ger part of the energy evolves as in the ASM. We write

�t = 1 + �ut for all t . �2�

Here ut is uniformly distributed in the interval �−1, +1�. The
linearity of energy transfer in toppling implies that the evo-
lution of the variables ��x , t� is independent of �. Thus,
��x , t� is a linear function of ut; the precise function depends
on the sequence of topplings that took place. These are de-
termined by the sequence of addition sites �at� up to the time
t, and the initial configuration C0. These together will be
called the evolution history of the system up to time t, and
denoted by Ht. We assume that at the starting time t=0, the
variables ��x , t=0� are zero for all x, and the initial configu-
ration is a recurrent configuration C0 of the ASM. Then, from
the linearity of the toppling rules, we can write ��x , t� as a
linear function of �ut�� for 1� t�� t, and we can write for a
given history Ht,

���x,t��ut�,Ht� = �
t�=1

t

G��x,t�at�,t�,Ht�ut�. �3�

This defines the matrix elements G��x , t�at� , t� ,Ht�. These can
be understood in terms of the probability distribution of the
position of a marked grain in the ASM as follows. Consider
the motion of a marked grain in the one-dimensional height
type BTW model. We start with configuration C0 and add
grains at sites according to the sequence �at�. All grains are
identical except the one added at time t�, which is marked. In
each toppling, the marked grain jumps to one of its two
neighbors with equal probability. Consider the probability
that the marked grain will be found at site x after a sequence
of relaxation processes at time t. We denote this probability
as Prob��x , t�at� , t� ,Ht�. From the toppling rules in both the
models, it is easy to see that

G��x,t�at�,t�,Ht� = Prob��x,t�at�,t�,Ht� . �4�

Averaging over different histories Ht, we obtain the prob-
ability that a marked grain added at x�=at� at time t� is found
at a position x at time t� t� in the steady state of the ASM.
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Denoting the latter probability by ProbASM��x , t�x� , t��, we ob-
tain

G��x,t�x� = at�,t�,Ht� = ProbASM��x,t�x�,t�� , �5�

where the overbar denotes averaging over different histories
Ht, consistent with the specified constraints. Here, the con-
straint is that Ht must satisfy at�=x�. At other places, the
constraints may be different, and will be specified if not clear
from the context.

We shall denote the variance of a random variable � by
Var���. For the specific case with �=0, using the definition in
Eq. �1�, it is easy to show that Var�E�x , t��=L / �L+1�2. For
nonzero �, in addition to the previous term, there will be a
term proportional to �2, as the term linear in � vanishes.
Hence, we can write

Var�E�x,t�� = L/�L + 1�2 + �2 Var���x,t�� . �6�

Different ut are independent random variables, also indepen-
dent of Ht and have zero mean. Let Var�ut�=	2. For the case
when ut has a uniform distribution between −1 and +1, we
have 	2=1 /3. Then, from Eq. �3�, we obtain

Var���x,t�� = 	2 �
t�=1

t

G2��x,t�at�,t�,Ht� . �7�

As t→
, the system tends to a steady state, and the average
on the right-hand side of Eq. �7� becomes a function of
t− t�. Also, for a given t�, all values of at� are equally likely.
We define

F�x,�� 	
1

L
lim

t�→

�
x�

G2��x,t� + ��x�,t�,Ht� . �8�

Then, for large L, in the steady state �t large�, the variance of
energy at site x is 1 /L+�2�2�x�, where

�2�x� = lim
t→


Var���x,t�� = 	2�
�=0




F�x,�� . �9�

We define �2 to be the average of �2�x� over x as

�2 =
1

L
�

x

�2�x� . �10�

Evaluation of G��x , t�x� , t� ,Ht� for a given history Ht and

averaging over Ht is quite tedious for t1 or 2. For Ḡ, the
problem has been studied in the context of residence times of
grains in sandpiles, and some exact results are known in
specific cases �11�. For G2, the calculations are much more
difficult. However, some simplifications occur in the large L
limit. We discuss these in the next section.

IV. CALCULATION OF �2(x) IN LARGE-L LIMIT

In order to find the quantity F�x ,�� in Eq. �8�, we have to
average G2��x , t�x� , t� ,Ht� over all possible histories Ht,
which is quite difficult to evaluate exactly. However, we can
determine the leading behavior of F�x ,�� in this limit.

We use the fact that the path of a marked grain in the
ASM is a random walk �11�. Consider a particle that starts

away from the boundaries at x�=�L, with L large, and
0���1. If it undergoes r�Ht� topplings between the time t�
and t= t�+� under some particular history Ht, then its prob-
ability distribution is approximately a Gaussian, centered at
x� with width 
r. Then, we have

G��x,t�x�,t�,Ht� �
1


2�r�Ht�
exp�−

�x − x��2

2r�Ht�
 . �11�

Using this approximation for G, summing over x�, we obtain

�
x�

G2��x,t�x�,t�,Ht� �
1

2
�r�Ht�
. �12�

Thus, we have to calculate the average of 1 /
r�Ht� over
different histories. Here r�Ht� was defined as the number of
topplings undergone by the marked grain. Different possible
trajectories of a marked grain, for a given history, do not
have the same number of topplings. However, if the typical
displacement of the grain is much smaller than its distance
from the end, differences between these are small, and can be
neglected. There are typically O�L� topplings per grain per
avalanche in the model, and a grain moves a typical distance
of O�
L� in one avalanche. Then, we can approximate r�Ht�
by N�x��, the number of topplings at x�.

Let the number of topplings at x� at time steps
�=0,1 ,2 , . . . be denoted by N0 ,N1 ,N2 , . . . . Then, N�x��
=N0+N1+N2+¯. It can be shown that the number of top-
plings in different avalanches in the one-dimensional ASM
are nearly uncorrelated. �In fact, the correlation function be-
tween Ni and Nj varies as �1 /L��i−j�.� By the central limit
theorem for the sum of weakly correlated random variables,
the mean value of N grows linearly with �, but the standard
deviation increases only as 
�. Then, for ��0, the
distribution is sharply peaked about the mean, and
�1 /
N��1 /
�N�.

Clearly, for ��0, �N�=�n̄�x��, where n̄�x�� is the mean
number of topplings per avalanche at x� in the ASM, given
by

n̄�x = �L� = L��1 − ��/2. �13�

The upper limit on � for the validity of the above argument
comes from the requirement that the width of the Gaussian
be much less than the distance from the boundary �without
any loss of generality, we can assume that ��1 /2, so that it
is the left boundary�, else we cannot neglect events where the
marked grain leaves the pile. This gives 
�n̄�x���L, or
equivalently, ���L. Thus we obtain

F�x,�� �
C1

L
��L��1 − ���−1/2 for 0 � � � �L , �14�

where C1 is some constant.
Also, we know that for ��L, the probability that the

grain stays in the pile decays exponentially as exp�−� /L�
�11�. Thus, Ḡ, and also G2 will decay exponentially with �,
for ��L. Thus, we have, for some constants C2 and a,
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F�x,�� �
C2

L2 exp�− a�/L� for � � L . �15�

It only remains to determine the behavior of F�x ,��, for
�L���L. In this case, in the ASM, there is a significant
probability that the marked grain leaves the pile from the
end. This results in a faster decay of G, and hence of F with
time. We argue below that the behavior of the function
F�x ,�� is given by

F�x,�� �
C3

L�
for �L � � � L , �16�

where C3 is some constant. This can be seen as follows: Let
us consider the special case when the particle starts at a site
close to the boundary. Then n̄�x� is approximately a linear
function of x for small x. Its spatial variation cannot be ne-
glected, and Eq. �12� is no longer valid. We will now argue
that in this case

G��x,t� + ��x�,t�,Ht� � x��−2 exp�− x/�� , �17�

for 0���L. The time evolution of ProbASM��x , t�x� , t�� in
Eq. �5� is well described as a diffusion with diffusion coef-
ficient proportional to n̄�x� which is the mean number of
topplings per avalanche at x in the ASM �11�. For under-
standing the long-time survival probability in this problem,
we can equivalently consider the problem in a continuous-
time version: Consider a random walk on a half-line where
sites are labeled by positive integers, and the jump rate out of
a site x is proportional to x. A particle starts at site x=x0 at
time t=0. If Pj�t� is the probability that the particle is at j at
time t, then the equations for the time evolution of Pj�t� are,
for all j0,

d

dt
Pj�t� = �j + 1�Pj+1�t� + �j − 1�Pj−1�t� − 2jPj�t� . �18�

The long time solution starting with Pj�0�=� j,x0
is

Pj�t� � x0t−2 exp�− j/t� �19�

for t�x0 and large j. The probability that the particle sur-
vives till time t decreases as 1 / t for large t. We have dis-
cussed the calculation in the Appendix.

Using Eq. �5�, we see that G��j , t�+��x0 , t�� scales as x0 /�2.

It seems reasonable to assume that G2 will scale as Ḡ2. Then,
each term in the summation for F�x ,�� in Eq. �8� scales as
x0

2 /�4, and there are � such terms, as the sum over x0 has an
upper cutoff proportional to �, and so F�x ,�� varies as 1 /�
for L���x0. This concludes the argument.

We can set these three limiting behaviors into a single
functional form that interpolates between these, as

F�x,�� �
1

L

K exp�− a�/L�
� + B
�L��1 − ��

, �20�

where K, a, and B are some constants. In Sec. V, we will see
that results from numerical simulation are consistent with
this phenomenological expression.

Using this interpolation form in Eq. �9�, and converting
the sum over � to an integration over a variable u=� /L, we
can write

�2�x = �L� �
	2

L
�

0




du
K exp�− au�

u + B
u��1 − ��
. �21�

This integral can be simplified by a change of variable
au=z2, giving

�2�x = �L� �
K	2

L
I�B�
��1 − ��� , �22�

where K ,B� are constants, and I�y� is a function defined by

I�y� = 2�
0




dz
exp�− z2�

z + y
. �23�

It is easy to verify that I�y� diverges as ln�1 /y� for small y. In
particular, we note that the exponential term in the integral
expression for I�y� has a significant contribution only for z
near 1. We may approximate this by dropping the exponen-
tial factor, and changing the upper limit of the integral to 1.
The resulting integral is easily done, giving

�2�x = �L� �
K�	2

L
ln�1 +

1

B�
��1 − ��
 , �24�

where K� is some constant. Averaging �2�x� over x, we get a
behavior �2�1 /L. Of course, the answer is not exact, and
one could have constructed other interpolation forms that
have the same asymptotic behavior. We will see in the next
section that results from numerical simulations for �2�x� can
be fitted very well to the phenomenological expression in Eq.
�24�.

V. NUMERICAL RESULTS

We have tested our nonrigorous theoretical arguments
against results obtained from numerical simulations. In Fig.
1, we have plotted the probability distribution PL�E� of en-
ergy at a site, averaged over all sites. We used L=200, 500,

0

1

2

3

4

-0.4 -0.2 0 0.2 0.4

P
L(

E
)/

√L

(E-1.0)√L

Gaussian
L=1000
L=500
L=200

FIG. 1. �Color online� Scaling collapse of the probability distri-
bution PL�E� of energy per site in the steady state for different
systems of size 200, 500, and 1000. The distribution is well de-
scribed by a Gaussian of width 0.136.
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and 1000, and averaged over 108 different configurations in
the steady state. We plot the scaled distribution function

PL�E� /
L versus the scaled energy �E− Ē�
L, where Ē is the
average energy per site. Using law of mass balance it is easy
to show that the average energy per site is exactly equal to

the average value of the addition of energy, hence Ē=1.0 in
our case. A good collapse is seen, which verifies the fact that
the width of the peak varies as L−1/2.

The dependence of the variance of E�x , t� on x is plotted
in Fig. 2 for systems of length 200, 300, and 400. The data
was obtained by averaging over 108 avalanches. We plot
�L+���2�x� /	2 versus xeff /Leff, where xeff differs from x by
an amount � to take into account the corrections due to end
effects. Then, for consistency, L is replaced by Leff=L+2�.
For the specific choice of �=5�1 and �=1.0�0.2, we get a
good collapse of the curves for different L. We also show a
fit to the proposed interpolation form in Eq. �24�, with K�
=1.00�0.01 and B�=1.5�0.2. We see that the fit is very
good.

In order to check the logarithmic dependence of �2�x� on
x for small x, we replot the data in Fig. 3 using logarithmic
scale for x. We get a good collapse of the data for different L,
supporting our proposed dependence in Eq. �24�.

VI. CONCLUDING REMARKS

To summarize, we have studied the emergence of quasi-
units in the one-dimensional Zhang sandpile model. The
variance of energy variables in the steady state is governed
by the balance between two competing processes. The ran-
domness in the drive, i.e., the energy of addition, tends to
increase the variance in time. On the other hand, the top-
plings of energy variables tend to equalize the excess energy
by distributing it to the nearby sites. There are on an average
O�L2� topplings per avalanche. Hence, in one dimension
there are, on an average, O�L� topplings per site per ava-
lanche. For large system size, the second process dominates
over the first and the variance becomes low. We have shown
that the variance vanishes as 1 /L with increasing system size
and the probability distribution of energy concentrates
around a nonrandom value which depends on the energy of
addition. We have also proposed a functional form for the
spatial dependence of variance of energy which incorporates
the correct limiting behaviors, and matches very well with
the numerical data.

An interesting question is whether one can extend these
arguments to the two-dimensional Zhang model. There is
some numerical evidence for the sharpening of energy peaks
as the system size is increased �14�. In the simplest scenario
�14�, there are z−1 peaks located at multiples of the quasi-
unit E0=Ec�z+1� /z2, where z is the lattice coordination num-
ber. This would imply that the asymptotic behavior of the
two-dimensional Zhang model is the same as the height type
BTW model in two dimensions. However, this simple sce-
nario cannot be fully correct. During an avalanche, there is a
finite probability that a site receives energy from two neigh-
bors in the previous time step. If the energy at the site before
was �z−1�E0, it will transfer an energy approximately equal
to E0�= �z+1�E0 /z to its neighbors. As such events occur with
nonzero probability, in the one site energy distribution func-
tion, there would have to be peaks around E0�, E0+E0� , . . .
also. These peaks then give rise to other peaks. With many
peaks, the definition of the width of a peak becomes some-
what ambiguous. As the number of topplings per site varies
only as ln L, the width is expected to decrease much more
slowly with L than in one dimension.
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APPENDIX

Here we discuss the solution of the Eq. �18� for the start-
ing values given by

Pj�t = 0� = � j−1. �A1�

We start with an ansatz Pj�t�=bt exp�−atj�, where both at
and bt are functions only of t. This form satisfies Eq. �18� for
all j, t0, if at and bt satisfy

dat

dt
= 2 − eat − e−at, �A2�

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

(L
+

λ)
Σ2 (x

)/
σ2

xeff/Leff

L=400
L=300
L=200

Theoretical function

FIG. 2. �Color online� Scaling collapse of �2�x� /	2 at site x for
systems of different length L.
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FIG. 3. �Color online� The same plot in Fig. 2 resolved more at
the left-hand boundary of the model and taking the x axis in loga-
rithmic scale.
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dbt

dt
= bt�e−at − eat� . �A3�

To solve Eq. �A2�, we first make a change of variable z
=e−at. In terms of z, the equation becomes dz /dt= �1−z�2,
which can be easily integrated to give

e−at =
t + A − 1

t + A
, �A4�

where A is an integration constant. To satisfy the initial con-
dition in Eq. �A1�, we choose

A = �1 − ��−1. �A5�

Similarly, to solve the equation for bt, we use the form of e−at

given in Eq. �A4� and obtain

dbt

dt
= bt

1 − 2�t + A�
�t + A��t + A − 1�

. �A6�

This can be integrated to give

bt =
B

�t + A��t + A − 1�
, �A7�

where B is an integration constant. Then the probability can
be written as

Pj�t� = B
�t + A − 1� j−1

�t + A� j+1 . �A8�

To satisfy the initial condition at t=0, we choose the integra-
tion constant B= �1−��−2. Then, with these values of A and
B, we have the solution for all j, t0, given by

Pj�t� =
��1 − ��t + �� j−1

��1 − ��t + 1� j+1 = � j��,t� . �A9�

Now, as � j�� , t� satisfies Eq. �18�,

� j,n��,t� =
1

�n − 1�!
�n−1� j�t�

��n−1 �A10�

will also satisfy the equation for any natural number n. In
addition,

� j,n�� = 0,t = 0� = � j,n. �A11�

Hence, we see that the solution of Eq. �18�, starting with
Pj�t�=� j,n at t=0 is

Pj�t� = � j,n�� = 0,t� = � 1

�n − 1�!
�n−1� j��,t�

��n−1 �
�=0

,

�A12�

for all j, t0, where � j�� , t� is given in Eq. �A9� and n is
any natural number.

It can be shown that for large t and j, the solution asymp-
totically becomes Pj�t�=nt−2 exp�−j / t�.
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